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Automatic Urticaria Activity Score: Deep
LearningeBased Automatic Hive Counting for
Urticaria Severity Assessment

Taig Mac Carthy1, Ignacio Hernández Montilla2, Andy Aguilar1, Rubén Garcı́a Castro3,
Ana Marı́a González Pérez4, Alejandro Vilas Sueiro5, Laura Vergara de la Campa6,
Fernando Alfageme7,8 and Alfonso Medela2,8
Chronic urticaria is a chronic skin disease that affects up to 1% of the general population worldwide, with
chronic spontaneous urticaria accounting for more than two-thirds of all chronic urticaria cases. The Urticaria
Activity Score (UAS) is a dynamic severity assessment tool that can be incorporated into daily clinical practice,
as well as clinical trials for treatments. The UAS helps in measuring disease severity and guiding the therapeutic
strategy. However, UAS assessment is a time-consuming and manual process, with high interobserver vari-
ability and high dependence on the observer. To tackle this issue, we introduce Automatic UAS, an automatic
equivalent of UAS that deploys a deep learning, lesion-detecting model called Legit.Health-UAS-HiveNet. Our
results show that our model assesses the severity of chronic urticaria cases with a performance comparable to
that of expert physicians. Furthermore, the model can be implemented into CADx systems to support doctors
in their clinical practice and act as a new end point in clinical trials. This proves the usefulness of artificial
intelligence in the practice of evidence-based medicine; models trained on the consensus of large clinical
boards have the potential of empowering clinicians in their daily practice and replacing current standard
clinical end points in clinical trials.
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INTRODUCTION
Urticaria is a very common disease characterized by
erythematous, edematous, itchy, and transient plaques that
involve the skin and mucous membranes. It can be classified
into subtypes, such as acute spontaneous urticaria, chronic
spontaneous urticaria, chronic inducible urticaria, and
episodic chronic urticaria (CU). Urticaria can be related to
factors such as infections, drugs, food, psychogenic factors,
and respiratory allergens, but sometimes it can also be idio-
pathic. Clinical manifestations of the disease involve red,
swollen, and itchy plaques. The lesions usually recede
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spontaneously within 2 to 3 hours without leaving a trace
(Kayiran and Akdeniz, 2019).

Diagnosis of CU is usually performed through clinical
observation. In other words, the assessment of the severity is
performed through manual scoring systems that are filled in
subjectively. The European Academy of Allergy and Clinical
Immunology, the European Global Allergy and Asthma
Network, the European Dermatology Forum, and the World
Allergy Organization Guideline have agreed on a list of
relevant items to be considered when assessing the condition.
In all cases, the literature suggests that analyzing a detailed
history is essential when diagnosing and treating urticaria.
On the one hand, to make a proper assessment, clinicians
should know the frequency of episodes, circumstances of
onset, triggers, duration of individual lesions, the pattern of
recurrence, duration of attacks, whether lesions are itchy or
painful, and whether episodes are associated with systemic
symptoms. On the other hand, beyond diagnosis, it is also
essential to document the response to the treatment because
there is a wide range of therapeutic options. Unfortunately,
there are no reliable markers to diagnose urticaria and
measure its activity. Therefore, the activity of urticaria can
only be measured using scoring systems, which are mainly
filled manually on paper sheets or through certain apps such
as UrCare or UrticariApp.
The most commonly used scoring system is the Urticaria

Activity Score (UAS), which can also be used for 7 consec-
utive days, in which case, it is referred to as UAS7. There are
alternative scoring systems, such as the Urticaria Control Test,
the Chronic Urticaria Quality of Life Questionnaire, the Pa-
tient’s Global Assessment of Disease Severity, and the
stigative Dermatology. This is an open
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Table 1. Intraobserver Annotation Variability Analysis

Specialist F1-Box Score F1-Mask Score MAE
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Physician’s Global Assessment of Disease Control, which
work in a similar manner. Ultimately, it can be said that pen
and paperebased questionnaires play a central role in the
management of urticaria. So much so that self-reported
questionnaires are the main, if not the only, prospective
measurement tools and the most accepted method of
assessing CU and assigning treatment to patients.
The most indisputable limitation of manual scoring systems

is the inherent difficulty of human beings to quantify pa-
rameters in an objective, stable, and precise manner. Humans
have a limited ability to count hives and quantify the surface
area of a lesion or the redness of an area.
This human limitation in parameter estimation is also re-

flected in the effort and time required to complete the urti-
caria activity questionnaires, which end up being a very
unrewarding task for patients and may result in poor
adherence.
Scoring systems classify disease severity using a limited

range of scores, with three or four categories, such as none,
mild, moderate, and severe in the case of the UAS. All these
questionnaires have a very high minimum detectable change,
as they are discrete ranges rather than continuous scales.
Finally, these questionnaires are susceptible to bias. This is

especially true for cases in which the patient knows that the
treatment they receive will be determined by the information
they provide. In addition, because of the asynchronous na-
ture of the reported measure, the clinical team lacks the
means to ensure that the values reported by the patient are
chronologically accurate or simply truthful, which precludes
external verification.
Because the concept of “artificial intelligence” was intro-

duced in 1956, it has led to numerous technological in-
novations in human medicine and is quickly becoming an
integral part of modern health care. Convolutional neural
networks (CNNs) have several applications, such as classifi-
cation, segmentation, object detection, and even synthetic
data generation. Many studies have applied classification
methods to perform diagnosis using clinical, dermatoscopic,
and histopathological imaging, whereas others applied seg-
mentation CNNs for lesion surface estimation and quantifi-
cation (Li et al., 2021). Wu et al. (2019) developed an object
detection method to count acne lesions for the first time in
the dermatological field.
In this work, we propose the Automatic UAS (AUAS), an

automatic version of the objective part of the UAS that ap-
plies CNNs to count hives automatically. The goal is to assist
clinicians in filling scoring systems such as the UAS in a more
objective manner and quicker, which could improve health
outcomes and provide high-quality end points to measure the
effectiveness of the treatments for urticaria.
A 0.070 0.831 1.714

B 0.167 0.884 1.286

C 0.062 0.692 1.667

D 0.127 0.694 1.095

E 0.055 0.846 3.286

Mean 0.096 0.789 1.810

Abbreviation: MAE, mean absolute error.

For each specialist, we calculated the F1 scores (F1-box and F1-mask) and
absolute error in every image pair and then averaged the results.
RESULTS
Annotation variability assessment

To further understand annotation performance and label
reliability, we used the F1 score (F1-box and F1-mask) and
mean absolute error (MAE) to assess both interobserver and
intraobserver variability. We also computed Krippendorff
alpha for both lesion counting and overall severity
assessment.
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Intraobserver variability. The results of this analysis are
presented in Table 1. In terms of bounding box annotation
agreement (i.e., the F1-box score), the results were not
compelling because we obtained an average score of 0.096,
suggesting that there was maximum variability. However, the
F1-mask scores remained high (with an average score of
0.789). This helped us understand the results a bit better,
which will be covered in Discussion. The lesion counting
variability in terms of MAE was low (1.81 hives on average).
The results from this analysis must be interpreted with

caution. As we stated while describing the dataset, this subset
of 21 image pairs mostly contains cases in which lesion
boundaries are very difficult to distinguish. Therefore, this
analysis has been useful to point out the challenges of
counting hives in difficult cases and the impact of distance
and perspective in image-based urticaria severity assessment,
but it does not summarize overall intraobserver variability.
Counting hives on all the remaining images of urticaria may
have been easier, but we did not have such pairs of close-up
and general images to conduct the analysis to prove it.

Interobserver variability. This analysis did not require any
preprocessing as in the intraobserver variability experiment.
For each specialist and image, we calculated the F1 scores
and MAEs among annotations and finally aggregated the re-
sults. Tables 2 and 3 show the similarity among specialists
using the F1 scores in the whole dataset. In terms of actual
lesion counting (MAE), the disagreement among observers is
more evident (Table 4). Krippendorff alpha was 0.826 for the
task of hive counting and 0.603 for severity assessment.
The results from these tables suggest that despite being an

overall noisy dataset, specialists may be agreeing on the
rough location of lesions but disagreeing on their extent.
Another source of disagreement may be that while specialists
tend to label a close group of lesions as a single box, others
prefer to be more precise and label each smaller lesion
separately (Figure 1).

Model performance

Hive detection. Training every model architecture on every
fold resulted in 20 experiments in total. Table 5 summarizes
the performance of Legit.Health-UAS-HiveNet with different
architectures in our 4-fold cross-validation scenario. In gen-
eral, all the versions showed a similar performance taking
into account the SD. However, if we consider model size and
inference speed, the winning model was YOLOV5m, which



Table 2. Interobserver Annotation Variability Analysis
in the 313 Urticaria Images Using the F1-Box Score
between Image labels

Specialist A B C D E
Average F1-Cox

Score

A - 0.455 0.383 0.419 0.476 0.433

B 0.455 - 0.390 0.406 0.563 0.454

C 0.383 0.39 - 0.360 0.388 0.380

D 0.419 0.406 0.360 - 0.413 0.400

E 0.476 0.563 0.388 0.413 - 0.460

The F1-box score between specialists was calculated for every image and
then averaged the results. The last column is the average of each
specialist’s F1-box score.

Table 4. Interobserver Annotation Variability Analysis
in the Urticaria Images (313 of 353): MAE

Specialist A B C D E Average MAE

A - 10.37 6.04 4.19 10.49 7.52

B 10.37 - 7.33 9.45 6.52 8.17

C 6.04 7.33 - 5.69 7.49 6.39

D 4.19 9.45 5.69 - 10.14 7.12

E 10.49 6.52 7.49 10.14 - 8.41

Abbreviation: MAE, mean absolute error.

For every image, we calculated the absolute error between each
specialist’s lesion counts and then averaged the results. The last column is
the average of each specialist.
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would provide faster performance than the actual best model
(YOLOv5x) when integrated in the CADx system.
Each of these 20 models (one for each split and architec-

ture) was validated on their corresponding validation sets
using a range of confidence thresholds while keeping the
intersection over union (IoU) threshold at 0.60 for non-
maximum suppression (NMS) and 0.50 for comparisons to
the ground truth. The best confidence threshold of each
model was the one that resulted in the highest F1 score. The
optimal confidence threshold for each model can be found in
Table 6. The best overall confidence threshold of each ar-
chitecture (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x) was the threshold that got the highest F1 score on
average. Figure 2 presents the average performance of each
model in terms of F1 score. This figure is useful to determine
the threshold to be used at inference time from which we can
conclude that a confidence threshold between 0.40 and 0.50
would offer optimal performance for all architectures.
To provide further detail regarding model performance on

each level of severity, Table 7 shows the average F1-box score
of each model on every severity group (none, mild, moder-
ate, and severe urticaria). We compared model performance
to the performance of the specialists by computing the F1-box
score between each specialist and the ground truth (Table 8).

Severity assessment based on lesion counting. We used the
best confidence threshold of each model to obtain the total
number of predicted hives and the corresponding severity in
every image of their validation splits. We then conducted a
Table 3. Interobserver Annotation Variability Analysis
in the 313 Urticaria Images Using the F1-Mask Score
between Image Labels

Specialist A B C D E
Average F1-Mask

Score

A - 0.677 0.619 0.614 0.693 0.651

B 0.677 - 0.629 0.637 0.746 0.672

C 0.619 0.629 - 0.574 0.629 0.613

D 0.614 0.637 0.574 - 0.636 0.615

E 0.693 0.746 0.629 0.636 - 0.676

For every image, we calculated the F1-mask score between specialists and
then averaged the results. The last column is the average of each
specialist’s F1-mask score.
Bland-Altman analysis on every fold to evaluate the counting
bias of each model. The results of this analysis using the
winning model (yolov5m) are presented in Figure 3. Krip-
pendorff alpha values for each task (lesion counting and
severity assessment) are summarized in Table 9, and MAE is
summarized in Table 10.

With regard to classification metrics, Table 11 present the
performance (balanced accuracy [BAC]) of each model. The
classification performance of each specialist compared with
the ground truth is summarized in Table 12.
Figure 1. Example of an annotated image with noisy labels. Inconsistent

labeling happened in some difficult cases, where some specialists may tag

each smaller hive individually, whereas some specialists may prefer to

consider the whole region as a single lesion. Image source: Interactive

Dermatology Atlas.
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Table 5. Average Detection Performance of Each YOLOv5 Architecture

Model P R F1-Box mAP@0.5 Time (s)

yolov5n 0.647 � 0.045 0.564 � 0.034 0.602 � 0.036 0.604 � 0.054 0.0335 � 0.0909

yolov5s 0.669 � 0.045 0.578 � 0.039 0.620 � 0.039 0.615 � 0.049 0.0337 � 0.0906

yolov5m 0.684 � 0.039 0.571 � 0.054 0.622 � 0.047 0.617 � 0.064 0.0354 � 0.0905

yolov5l 0.682 � 0.071 0.570 � 0.046 0.621 � 0.054 0.618 � 0.068 0.0371 � 0.0897

yolov5x 0.681 � 0.043 0.578 � 0.055 0.624 � 0.044 0.621 � 0.065 0.0390 � 0.0895

Abbreviations: mAP@0.5, mean average precision; P, precision; R, recall.

Precision (P), recall (R), F1-box score, and mean average precision (mAP@0.5) on the Legit.Health-CU-UAS-V1 dataset with 4-fold cross-validation (mean �
SD). We also include the average inference time per image (including all the image preprocessing required to feed the model). This F1-box score is computed
using the total number of ground truth and predicted boxes of all the dataset, not per image.
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Skin tone and model performance. To understand model
performance in images of the patients with urticaria with dark
skin, we separated some of the metrics by skin tone into light
and dark skin. Table 13 shows overall behavior in terms of F1-
box, BAC, and MAE for both skin tones.
DISCUSSION
Our earliest exploration of the annotations (Table 14) sug-
gested that urticaria assessment can be affected by interob-
server variability. This has been further explored in Tables 2
and 3, confirming the presence of strong interobserver vari-
ability. Even under such variability, all specialists tended to
agree on the actual number of hives, as indicated by the high
Krippendorff alpha coefficient (0.826). However, variability
has an impact on their agreement in terms of severity
assessment (0.603) because large variations in hive counts
can lead to a jump to the next or previous stage of severity
(Table 15). Moreover, our intraobserver variability analysis,
despite being limited, has shown that the assessment of the
same specialist can change drastically on looking at the same
case from a different point of view (Table 1) or at least in the
presence of severe urticaria.
Overall, our variability analysis suggests that hive counting

can become a time-consuming task, and specialists may
prefer to estimate the approximate number of hives instead of
actually counting them one by one and their annotations for
this work may be reflecting this behavior (Figure 1).
Observer variability poses a problem for obtaining reliable

manual counting reports from both the patient and the doc-
tor. In contrast to manually calculating the hive number and
using only four categories, Legit.Health-UAS-HiveNet aims
for objective and quick evaluation by counting hives indi-
vidually and automatically filling the objective part of the
Table 6. Best Confidence Thresholds

Model Fold 1 Fold 2 Fold 3 Fold 4

yolov5n 0.27 0.36 0.38 0.39

yolov5s 0.44 0.27 0.37 0.48

yolov5m 0.36 0.43 0.41 0.56

yolov5l 0.24 0.33 0.39 0.56

yolov5x 0.42 0.23 0.52 0.41

The best confidence threshold is the one that achieves the highest F1 score
in the validation set. The intersection over union threshold for
nonmaximum suppression was always set to 0.60.
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UAS (AUAS) and should therefore be developed further as an
alternative method to human assessment. Despite the current
dataset size, the hive detection metrics summarized in
Table 5 are promising and show the potential of deep
learning methods as a means of automatic hive counting.
In terms of severity assessment, BAC of Legit.Health-UAS-

HiveNet was, on average, lower than that of the specialists,
but the results are compelling. Lower metrics compared with
those of the specialists was an expected outcome because
class imbalance made every split has a different ratio of each
severity and hinder a model’s ability to generalize to severe
cases. In fact, the Bland-Altman plots presented in Figure 3
for the best architecture (YOLOv5m) reveal that all models
are biased to some degree. This Bland-Altman analysis also
suggests that measurement difference tends to increase with
the number of hives, that is more the number of hives, the
more severe the case is, and therefore more likely it will be to
have overlapping of irregular hives.
Another reason behind the current performance (of both

models and specialists) on images of severe urticaria is the
appearance of the lesions. Most of the images of severe ur-
ticaria contain either lesions of very irregular shapes or many
small lesions close to each other, which led to extremely
noisy and heterogeneous labels. With some images of severe
cases containing >100 hives (Table 14), it was expected that
some specialists would prefer to annotate bigger boxes and
avoid such extremely high levels of detail. This can be also
the case in full-body images, in which small hives may tend
Figure 2. Selection of the best confidence threshold based on the F1 versus

confidence plot. For each model architecture, we averaged the F1 score plots

(one for each split) to find which threshold produces the highest F1 score.
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Table 7. F1-Box Score of Each Model, Separated by
Severity (4-Fold Cross-Validation)

Model

F1-Box Score

None Mild Moderate Severe

yolov5n 0.84 � 0.17 0.53 � 0.04 0.59 � 0.06 0.53 � 0.06

yolov5s 0.85 � 0.17 0.53 � 0.04 0.60 � 0.08 0.59 � 0.10

yolov5m 0.87 � 0.14 0.54 � 0.04 0.61 � 0.10 0.55 � 0.09

yolov5l 0.84 � 0.12 0.54 � 0.05 0.59 � 0.08 0.56 � 0.08

yolov5x 0.93 � 0.05 0.56 � 0.05 0.60 � 0.09 0.56 � 0.07

Each validation split was separated into groups of images according to the
ground truth severity. The F1-box score was then computed for every
image of the group and averaged. We present the aggregated results of all
folds.
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to be grouped and be considered as a single lesion. Apart
from lesion shape, we have also observed high variability in
terms of image intensity and contrast, which may have also
affected the annotation process (including the assignment of
the exact Fitzpatrick Scale). All these factors made our
knowledge unification algorithm produce inaccurate labels
in these difficult cases which, when compared with the
actual predictions, resulted in a higher MAE.
Figure 1 depicts an example of such a scenario, in which

because of having a small clinical annotation team, noisy
labels may have a remarkable impact on the final labels,
which are obtained from the weighted sum of all doctors’
annotations. Such limitation will be overcome with a bigger
annotation team, owing to an increased density of labels at
each potential lesion, spurious inaccurate boxes, such as the
presented in Figure 1, would be attenuated when generating
the overall Gaussian map. We also believe that it would be
possible to reduce the effect of both lesion and skin appear-
ance by working on different color spaces not only at training
time but also earlier during annotation; giving the specialists
different views of the same image might boost annotation
performance. Another future improvement is to work with
images of enough resolution and quality, which was not al-
ways possible at this point. Future work will be required to
acquire new images instead of relying on atlases. Such new
images will be taken with a clear goal, which is to guarantee
Table 8. Average F1-Box Score of each Specialist
Versus the Consensus (Ground Truth)

Specialist

F1-Box Score

Mild Moderate Severe

A 0.65 0.58 0.53

B 0.44 0.33 0.23

C 0.63 0.55 0.41

D 0.51 0.37 0.38

E 0.62 0.52 0.49

Mean 0.57 0.47 0.41

To be comparable to the models, we computed the F1-box score of each
specialist to the ground truth in every validation split and then obtained
the mean and SD. The “none” category (i.e., the healthy images) has been
omitted because they were not annotated, and their agreement on this
category is not required because it is always 1.
a successful and detailed annotation to obtain more reliable
labels.
However, despite all the challenges in this work, the results

presented in Tables 5 and 8 give us valuable insights; looking
at the F1-box score, we can conclude that the models have
similar performance to that of the specialists.
Regarding the knowledge unification algorithm, comparing

every possible pair of annotations could become intractable if
all the images had a high number of boxes per specialist, which
would make our current method time-consuming and
extremely slow. For that reason, we suggest using the F1-mask
score insteadof the F1-boxwhendealingwith urticaria datasets
with an even large number of annotations. Despite the fact that
a semantic segmentation metric is not suitable for object
detection, we believe it could serve as a fast alternative to
approximate the ideal annotation score without the in-
conveniences of long processing times.
Last but not the least, another limitation of this study was

image demographics. Although our dataset already contained
examples with dark skin tones, the majority of pictures pre-
sent similar demographics (Caucasian). We decided to assess
hive detection performance on these dark skin images and
include some examples in the figures. Table 13 compares
model performance on light and dark skin. The output of a
YOLOv5m model on a validation image of dark skin is pre-
sented in Figure 4. On these dark skin images, it is easier to
spot hives based on how light reflects the skin (detecting the
bumps), whereas erythema is not as easy to observe on lighter
color skin. This may make it easier for a human to annotate
light skin images (and therefore for a model to learn and
generalize). However, the average performance of the current
models on dark skin is compelling, probably because despite
being more difficult to spot, they present mild or moderate
urticaria, which makes them easier to be annotated without
noise. In conclusion, in future iterations of this study, apart
from recruiting a larger annotation team and using a larger
dataset, we will also include as many cases of every skin tone
as possible to overcome any bias related to pigmentation.

MATERIALS AND METHODS
Dataset and annotations

To conduct this retrospective, noninterventional study, we collected

and annotated images from several dermatology atlases to obtain a

new dataset called Legit.Health-CU-UAS to train and test the per-

formance of the hive counting model.

The initial dataset consisted of 334 images of patients with CU on

different body parts and 40 images of healthy individuals with

different skin tones. This resulted in an initial dataset size of 374

images. The images have a minimum size of 170 � 191 pixels, an

average size of 696 � 1,008 pixels, and a maximum size of 5,464 �
8,192 pixels. We manually reviewed every image to estimate the

total number of subjects to correctly split the data into training and

validation sets. This exploration revealed 248 different subjects.

The dataset was annotated by a board of five expert dermatolo-

gists who frequently care for patients with urticaria. The 40 skin

images from healthy individuals did not require annotation because

they did not contain any lesions at all. After an initial review of the

images of the skin of patients with urticaria (334), all specialists

agreed by majority vote on removing 21 images from this set

because they did not meet the following preestablished technical
www.jidinnovations.org 5
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Figure 3. Bland-Altman analysis of the winning architecture (YOLOv5m). We generated the Bland-Altman plot for every model of this architecture (each one

trained and validated on a different fold).
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requirements: some images were incorrectly labeled (they were not

actual cases of urticaria) and others, despite being of urticaria, were

not in the scope of this project (e.g., urticaria pigmentosa). This

reduced the number of urticaria images from 334 to 313. Cleaning

the dataset resulted in a final dataset size of 353 images (313 of

urticaria and 40 of healthy skin) and 231 subjects.

From this final set of 353 images, we observed that 21 images

were either close-up views of other images or were the same pic-

tures but taken from slightly different angles and distances. This
Table 9. Krippendorff Alpha for Hive Counting and
Severity Assessment

Model Lesion Counting Severity Assessment

yolov5n 0.890 � 0.031 0.805 � 0.051

yolov5s 0.909 � 0.039 0.795 � 0.021

yolov5m 0.895 � 0.032 0.715 � 0.072

yolov5l 0.888 � 0.055 0.760 � 0.026

yolov5x 0.898 � 0.067 0.773 � 0.088

After computing these coefficients for each model on every fold, we
aggregated the results (mean and SD).

JID Innovations (2024), Volume 4
became convenient for assessing intraobserver variability. However,

it is important to point out that most of the images of this subset

corresponded to difficult examples of urticaria in which lesion

boundaries are difficult to define. This poses a limit to the power of

this variability analysis, which will be discussed in subsequent

sections.
Table 10. Regression Metrics of Each YOLOv5 Model
in their Validation Splits, Separated by Severity

Model

MAE

None Mild Moderate Severe

yolov5n 0.16 � 0.17 2.75 � 0.52 7.74 � 1.28 14.70 � 3.70

yolov5s 0.23 � 0.32 2.69 � 0.31 7.45 � 1.83 11.90 � 5.83

yolov5m 0.16 � 0.20 2.42 � 0.34 8.68 � 1.68 22.00 � 6.15

yolov5l 0.19 � 0.17 2.60 � 0.44 8.65 � 1.46 15.40 � 8.49

yolov5x 0.08 � 0.05 2.44 � 0.42 7.805 � 2.9 12.83 � 8.00

Abbreviation: MAE, mean absolute error.

The method for computing the metric in severity groups was the same as
for Table 9. The results presented are the mean and SD of all folds.



Table 11. BAC of Each Model (4-Fold Cross-
Validation)

Model BAC

yolov5n 0.71 � 0.07

yolov5s 0.72 � 0.05

yolov5m 0.58 � 0.04

yolov5l 0.69 � 0.05

yolov5x 0.70 � 0.10

Abbreviation: BAC, balanced accuracy.

The classification task consists of correctly labeling each image as “none,”
“mild,” “moderate,” or “severe” urticaria based on the number of hives
detected by the model (itch severity was not taken into account in the
present work). For each fold, we calculated BAC and then aggregated the
results (mean and SD).

T Mac Carthy et al.
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The demographics of the final dataset are presented in Table 16.

We have the following four groups of subjects: patients with urticaria

with dark skin, healthy individuals with dark skin, patients with ur-

ticaria with light skin, and healthy individuals with light skin. We

split each of the patient groups into four folds. The presence of ur-

ticaria in patients with darker skin tones, although underrepresented,

made it possible to conduct a preliminary analysis of model per-

formance on dark skin. For these patients with urticaria who had

dark skin, because we had exactly 4 subjects, we decided to invert

the splitting method in which for each fold, we assigned 1 subject to

the training set and 3 subjects to the validation set. We did this on

purpose because we wanted to assess model performance on all

folds when images of patients with urticaria with darker skin tones

are underrepresented in the training set. The distribution of the data

for this 4-fold cross-validation experiment is presented in Table 17.

Being able to separate images according to subject made it possible

to stratify the training and validation sets in a manner that prevented

data leakage. To label the skin as “dark” or “light,” we manually

reviewed every image by comparing it to the Fitzpatrick scale color

references. The lower scale values (1, 2, and 3) were considered light

skin, and the remaining values (4, 5, and 6) were treated as dark

skin.

Regarding the annotation carried out by the expert specialists on

the urticaria images, Table 14 summarizes each specialist’s perfor-

mance. The annotation task consisted of drawing a box around each

hive, hereafter referred to as a “bounding box.” Figure 1 shows an

example of an annotated image with its corresponding bounding

boxes from all annotators. The experts had no time limit to perform
Table 12. Classification Metrics of the Specialists:
BAC

Specialist BAC

A 0.87

B 0.89

C 0.74

D 0.75

E 0.88

Mean 0.83

Abbreviation: BAC, balanced accuracy.

For each specialist, we compared their severity answers on every image
(based on how many hives they labeled) to the consensus (ground truth).
the task and could revisit the annotation any number of times, and

they received prior training on how to properly annotate lesions. Itch

severity was not considered in this work because it was not possible

to obtain this subjective variable from the selected images. Once the

annotation of an image was completed, it was possible to obtain the

severity based on the number of hives labeled, excluding the itch

severity. Figure 5 shows the distribution of severity for each

specialist.

Ground truth. To make annotations more accurate and reliable

for supervised training, clinical imaging datasets must be reviewed

by a large number of specialists. However, this presents a great

challenge: each specialist labels differently, which very often results

in annotations that are far from similar and sometimes even mutually

exclusive (Figure 1). In this particular scenario, in which one image

can contain >100 annotations, merging labels in a recursive process

(e.g., finding overlapping boxes and merging them recursively) can

become intractable. This led us to develop a more efficient alter-

native. To the best of our knowledge, literature on clinical label

denoising in object detection is sparse (Khudorozhkov et al., 2018;

Welikala et al., 2020). In this study, we present a clinical knowledge

unification method that makes it possible to train deep learning

models with inconsistently labeled object detection datasets. We

found our method similar to that presented by Khudorozhkov et al.

in some aspects, such as computing a performance score for each

annotator (Khudorozhkov et al., 2018); however, our method differs

when it comes to lesion scoring and merging.

In broad terms, our method consists of considering every box

individually and, based on the level of similarity between annotators,

combining them to obtain a final set of boxes that reflects the highest

consensus. In other words, each of the bounding boxes in any given

image is transformed into a Gaussian distribution, and therefore, all

boxes are combined in a weighted sum based on the compared

performance of their annotators. This results in a single Gaussian map,

which can be seen as a “lesion confidence map,” in which the

outstanding areas correspond to the regions with the highest

consensus (and therefore with the highest confidence of a lesion being

present), which will be used as labels (bounding boxes) to train the

Legit.Health-UAS-HiveNet network (Figure 6). As we stated before,

our method happens to be a simplified version of that of Khudor-

ozhkov et al. because it is not iterative, and the lesion confidence

estimation is more straightforward. This makes our method more

affordable and feasible while dealing with images with a high number

of annotations, as using iterative methods on this dataset would have

become intractable. The code of our knowledge unification method is

available at https://github.com/Legit-Health/AUAS.

Similarity score. In the first place, each specialist (d) was given an

overall score (sd) based on how well they matched every other

specialist (d’) in the entire dataset. Our method to obtain this score

uses the Dice coefficient or F1 score (Equation 1) as the base score to

measure similarity among observers. This coefficient is extensively

used to measure similarity between two given samples (X and Y).

Because a score of 1 implies a perfect match between samples, which

can be extremely unlikely, an F1 score of 0.7 can already be consid-

ered an indicator of an excellent match (Zijdenbos et al., 1994).

F1ðX ;Y Þ ¼ 2jXXY j
jX j þ jY j (1)
www.jidinnovations.org 7
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Table 13. F1-Box Score, BAC and MAE for Different Skin Tones

Model

Light Skin Dark Skin

F1-Box BAC MAE F1-Box BAC MAE

yolov5n 0.57 � 0.04 0.70 � 0.07 4.10 � 0.41 0.59 � 0.09 0.87 � 0.089 1.66 � 0.69

yolov5s 0.59 � 0.04 0.71 � 0.07 3.95 � 0.55 0.575 � 0.13 0.82 � 0.12 1.55 � 0.62

yolov5m 0.60 � 0.06 0.59 � 0.04 4.42 � 0.83 0.525 � 0.12 0.76 � 0.12 1.51 � 0.75

yolov5l 0.60 � 0.05 0.70 � 0.04 4.05 � 0.71 0.53 � 0.03 0.78 � 0.09 1.50 � 0.57

yolov5x 0.61 � 0.05 0.70 � 0.10 3.82 � 0.79 0.53 � 0.13 0.84 � 0.06 1.47 � 0.82

Abbreviations: BAC, balanced accuracy; MAE, mean absolute error.

The dark skin images of our current dataset contain only healthy skin or mild urticaria, hence the superior results. We present the aggregated results of all
folds (mean and SD).

T Mac Carthy et al.
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In this method, X and Y refer to the sets of annotated boxes of two

different specialists (Bd and Bd’). Thus, the F1 score between two

specialists can be seen as the ratio of the number of good matches

(overlapping boxes) to the total number of boxes. We will refer to

this metric as the F1-box score. To measure overlapping between

boxes for the F1-box score, we used the IoU (Equation 2) and set the

threshold to 0.5, meaning that two boxes with an IoU equal or

greater than this value are considered a match.

IoUðX ;Y Þ ¼ jXXY j
jXWY j (2)

By computing the average F1-box score between each observer

versus every other in an image, we obtain the similarity score on that

image for each annotator (sd
i). The final annotator similarity score

(sd) is the average F1-box score between observers in the entire

dataset (Equation 3). Here, D is the total number of annotators (5),

and N is the total number of images of the patients with urticaria

(313), which are the ones that have the labels that need to be

merged.

sid ¼ 1

D � 1

XD

d 0sd
F1ðBd 0 ;Bd Þ sd ¼ 1

N

XN

i
sid (3)

Lesion confidence map. The second step of our algorithm was

converting all the bounding boxes of an image i of size (Wi, Hi) into

a set of modified Gaussian distributions. The jth bounding box of the

ith image (bij) is defined by its top-left corner (xij, yij) and its shape

(wij, hij). The person who annotated that box is also known (pij).
Table 14. Annotation Summary of the Urticaria
Images (313 of the Final Set of Images): Minimum,
Maximum, and Average Number of Hives Detected in
an Image and the Total Number of Annotations
Generated Per Observer

Specialist

Hives

Min Max Average Total

A 0 148 23 7682

B 0 115 15 5007

C 1 67 12 4031

D 0 82 12 3949

E 0 178 20 6534

Abbreviations: Max, maximum; Min, minimum.
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bij ¼
�
xij ; yij ;wij ; hij ; pij

�
p˛D (4)

G
�
X ;Y ; bij

�
¼ Aexp

(
�
�
B2 þ C2

�
2

)
(5)

A ¼ 3 B ¼ X � cx
ij

sjx
C ¼ Y � cy

ij

sjy
(5)

�
cx

ij ; cy
ij
� ¼  

xij þwij

2
; yij þ hij

2

!
(5)

sjx ¼ a
wij

8
sjy ¼ a

hij

8
a ¼ 1 (5)

For each box, we created a Gaussian map of size (Wi, Hi) with a

Gaussian distribution G with the center of the box as the center of

the distribution (Equation 5). The ranges of the distribution are X˛
[0,Wi-1] and Y˛[0, Hi-1].

We wanted to use these Gaussian distributions to model “lesion

confidence.” However, when we initially used these distributions in

the following stages of our method (i.e., the filtering and thresh-

olding stage), the results were not compelling, that is the redundant

boxes were not properly merged despite being close to each other,

and sometimes we obtained boxes that did not fully cover their

corresponding hives.
Table 15. UAS (Urticaria Activity Score)

Itch
Severity
Score Itch Severity (Once Every 24 h)

Hives
Severity
Score

Number of
Hives per 24

h

0 None 0 0

1 Mild (present but not annoying or

troublesome)

1 <20

2 Moderate (troublesome but does not

interfere with normal daily activity or

sleep

2 20-50

3 Intense (interferes with normal daily

activity or sleep)

3 >50



Figure 4. Validation of Legit.Health-

UAS-HiveNet on dark skin images.

Predictions of YOLOv5m (green) on a

validation image of fold 2 compared

with the ground truth (purple). The

model is capable of detecting several

hives but still misses some of them and

yields a false positive. Image source:

Interactive Dermatology Atlas.
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For that reason, we modified these Gaussian distributions by

making them wider and converting their peaks into plateaus.

We achieved this by setting A > 1 (scaling the function) and

then clipping G(bij) between 0 and 1 so that the map remained

as an approximation of lesion confidence. Figure 7 shows an

example of how we scaled and clipped the Gaussian distribu-

tions. The parameter a can additionally control the size of our

distribution in terms of SD. If a ¼ 1, the ranges of the Gaussian

are equal to the height and width of the box (wij ¼ 8sx
ij and hi

j¼ 8sy
ij); when 0 < a < 1, the smaller SD makes the Gaussian

distribution narrower, concentrating its mass around the center

of the distribution (i.e., the center of the box that it represents).

After exploring several parameter settings, we used A ¼ 3 and

a ¼ 1 because these produced the best-looking ground truth

labels. The reason behind our choice is that if we consider the

original Gaussians as “lesion confidence” distributions, they

would imply that the hive is only in a relatively small central

area inside of the box (the region with the highest confidence).

This is not the case in our bounding box annotation scenario, in

which we know that most of the pixels inside our boxes

correspond to an actual hive, not just the ones in the exact

central part of the box.

By taking all boxes in the image i labeled by a doctor d (Bd)

and combining all their corresponding maps, we obtained the

overall confidence map of image i by doctor d (Equation 6). The

final modified Gaussian map of an image (see step 2 in

Figure 6) was the weighted sum of all annotators’ individual
Table 16. Patient Demographics of the Legit.Health-
CU-UAS Dataset after Annotating and Reviewing the
Images

Skin Tone Urticaria Healthy

Dark 4 7

Light 192 33
maps, constructed using the annotation scores sd as weights

(Equation 7).

GðX ;Y Þid ¼
X

bij˛Bd
G
�
X ;Y ;bij

�
Bd ¼

n�
xij ;yij ;wij ;hij ;pij

����pij ¼d
o
(6)

GðX ;Y Þi ¼
XD

d
wdGðX ;Y Þid wd ¼ sdXD

d
sd

(7)

Regarding the annotation score used in the weighted sum, it could

be possible to use either the annotation scores per image (i.e.,

computing the annotation score of each doctor, based only on the

image whose labels are being processed, as in Equation 3) or the

overall score (i.e., the average scores of each doctor for the entire

dataset). We preferred to use the second one because we believe it is

a better implementation of our goal, which is to combine labels

based on each specialist’s overall reliability. In other words, we want

the opinion of the most reliable and stable annotators to have a

greater contribution to the ground truth than that of the ones who

created the noisy labels.

Similar to map G(X,Y)i, we also computed the width and height

maps Gw(X,Y)
i and Gh(X,Y)

i. These were identical to G(X,Y)i with the

exception of the additional terms wij and hij and the element-wise

division by G(X,Y)i. The reason behind using these maps in addi-

tion to weighing by annotation scores sd was to limit each box’s

contribution to the final width and height of a merged box in a

certain location. In other words, we wanted each box to contribute

to the final width and height based on how close they were to the

final location of the merged box. The element-wise division by

G(X,Y)i was required to keep box width and height in their original

ranges. Once all the maps of an image were generated, they were

combined in a weighted sum, as in G(X,Y)I, using the annotation

scores as weights.

After this process, each point in Gw
i and Gh

i contained an

approximated bounding box width and height, should a box be

found in that location. In other words, given a point (u,v), the
www.jidinnovations.org 9
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Table 17. Summary of Our 4-Fold Cross-Validation Experiment

Fold
Training
Images

Validation
Images

Total Training
Subjects

Total Validation
Subjects

Dark Skin Subjects in the
Training Set

Dark Skin Subjects in the
Validation Set

1 262 91 171 60 5 6

2 256 97 171 60 5 6

3 245 108 171 60 5 6

4 280 73 172 59 6 5

All four patient groups were split into training and validation four times.

T Mac Carthy et al.
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values of Gw(u,v)
i and Gh(u,v)

i are the estimated width and

height of a hypothetical bounding box centered at (u,v) (Equa-

tion 8).

GwðX ;Y Þid ¼
X

bij˛Bd
G
�
X;Y ;bij

�
wij

GðX ;YÞi GhðX ;Y Þid ¼
X

bij˛Bd
G
�
X ;Y ;bij

�
hij

GðX;Y Þi

GwðX;Y Þi ¼
XD

d
wdGwðX ;YÞid GhðX ;Y Þi ¼

XD

d
wdGhðX;Y Þid

(8)

Blob detection and bounding box estimation. The overall

map G(X,Y)i was then used to obtain the centers of the merged

bounding boxes. By applying a minimum filter of size 5 and

applying a threshold t, we separated the peaks of G(X,Y)i into K

blobs (Figure 6, step 3). The minimum filter was useful to

attenuate the overlapping areas of any pair of nonredundant

boxes (i.e., boxes that correspond to clearly differentiated le-

sions) because of either imprecise annotation or uncommon

hive shape that could cause two separate boxes to be merged

into a single blob after thresholding or create spurious boxes at

the overlapping area.

Finally, the center of each blob k, Ck ¼ (Cx
k,Cy

k) became the

center of each final candidate bounding box, and the width

and height of each of these bounding boxes were extracted

from the values in maps Gw
i and Gh

i at Ck (Equation 9). The

final output of this algorithm was a set of boxes Oi for every
Figure 5. Severity distribution of the 313 urticaria images, according to each

specialist.
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image i. We used these final annotations to train our models

(Figure 6, step 4).

O ¼ fokg ok ¼ �
xk ; yk ;wk ; hk

�
xk ¼ Ck

x �wk

2
yk ¼ Ck

y � hk
2

wk ¼ Gw

�
Ck
�i

hk ¼ Gh

�
Ck
�i (9)

Finally, the urticaria severity of each image was determined by

counting the number of boxes after running this model and

assigning the corresponding severity according to the UAS. The

distribution of urticaria severity in the processed dataset became

40 images of individuals with no urticaria, 223 with mild

urticaria, 78 with moderate urticaria, and 12 with severe

urticaria.

Image registration and feature matching for variability asses-

sment. Using the subset of 21 close-up images described in

“Datasets and annotations,” we compared the labels of these images

(Ii
close-up) against the ones of their full-view counterparts (Ii

jull). This

resulted in a subset of 21 image pairs (42 images in total). However,

a close-up image may not contain all the lesions of a full-view im-

age, which means that it is not possible to compare their annotations

directly. For this reason, we decided to limit the full-view image

labels to those in the same area as that shown in the close-up image.

This way, the labels of both images should refer to the same lesions

(see Figure 8).

This became a challenge because we did not have prior knowl-

edge of what part of the full-view images the close-ups belonged to;

therefore, we were not able to match close-up and full-view images’

bounding boxes in a straightforward manner. We overcame this by

using image registration with feature matching as follows: (i) given a

pair of images consisting of a full-view image Ii
full and its close-up

view Ii
close-up, extract their scale-invariant feature transform fea-

tures and descriptors (Lowe, 2004), (ii) find the key point matches

between images Ii
close-up and Ii

full and use these matching pairs to

find the homography matrix, (iii) use the homography matrix to

apply a perspective transform to the bounding boxes of Ii
close-up so

that they can be correctly displayed in Ii
full. In addition, we also

applied the same transform to the top left and bottom right corners of

the close-up image, (0,0) and (Hclose-up, Wclose-up), to obtain the

coordinates of the perimeter of Ii
close-up inside Ii

full (see Figure 8), and

(iv) now that both labels (close-up and full-view) coexist in the same

space, discard all the labels that are not inside the perimeter of in-

terest (Ii
close-up).



Figure 6. Overview of our knowledge unification algorithm.
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Once we had a set of matching boxes, it was possible to compute

the different similarity scores for each specialist as described in the

previous section, as well as the MAE.

AUAS. The UAS is a commonly used patient-reported outcome

measure that assesses itch severity and hive count in chronic spon-

taneous urticaria, using diary-based documentation that is carried

out once or twice a day (Table 15). As urticaria symptoms change

frequently in intensity, the overall disease activity is best measured

by advising patients to document 24-hour self-evaluation scores

once a day for several days (Zuberbier et al., 2018). Currently,

following two versions of the daily UAS exist: one that assesses the

number of hives and the intensity of itch twice daily (every 12 hours)

and one that assesses hive number and itch intensity once daily

(every 24 hours). UAS7 values range from 0 to 42, with higher values

reflecting higher disease activity (Mathias et al., 2010; Młynek et al.,

2008). The once-a-day diary (Młynek et al., 2008) has been rec-

ommended by the EAACI/GA2LEN/EDF/WAO international urticaria

guidelines (Zuberbier et al., 2018), which decreases the burden on

the patient; however, it may be more prone to bias compared with

the twice-daily UAS (Hollis et al., 2018). Hollis et al. (2018) provide

evidence to support the use of either versions of the weekly UAS

when evaluating chronic spontaneous urticaria activity.

In this study, we present a model that automatically counts the

number of hives in an image. We named it the AUAS.
Figure 7. Example of scaling, clipping, and merging of lesion confidence distrib

inside (the dashed lines correspond to the box edges) to model lesion confidence.

omitted for clarity. Owing to the scaling and clipping technique, any pair of redu

thus contributing to reducing the noisy annotations.
Deep learning model

As shown in Table 15, the UAS categorizes the number of hives into

four categories (0, <20, 20e50, and >50). This could be tackled

with an image classification model with four output categories, but

the resulting model would not be able to count the hives. In the

worst-case scenario, such an image classifier could learn to label

urticaria images as one of the four classes, not by looking at actual

hives but instead by reacting to other visual cues. To prevent this

undesirable behavior, we redefined the problem as an object

detection task and trained a hive-counting neural network, which we

called Legit.Health-UAS-HiveNet.

Legit.Health-UAS-HiveNet. Object detection is the task of

detecting instances of objects of a certain class within an image. The

state-of-the-art methods can be categorized into following two main

types: one-stage methods and two-stage methods. One-stage

methods prioritize inference speed, and example models include

YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), and RetinaNet

(Lin et al., 2017). Two-stage methods prioritize detection accuracy,

and example models include Faster R-CNN (Ren et al., 2015), Mask

R-CNN (He et al., 2017), and Cascade R-CNN (Cai and

Vasconcelos, 2021).

For this study, we used an open-source Python implementation of

one of the most recent YOLO versions, called YOLOv5, which has

been extensively used by the machine learning community. YOLO
utions. For each bounding box annotated (left), we fit a Gaussian distribution

The second dimension of both the box and the Gaussian distribution has been

ndant boxes (right) will be considered as one after filtering and thresholding,
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Figure 8. Image and bounding box registration with feature matching. Key

point matches between the close-up and full-view images are used to

transform the close-up image into the full-view image space. Once all the

bounding boxes coexist in a single space, they can be compared with our

proposed metric (F1 score). Note that the analysis will be limited to the new

coordinates of the close-up images in the full-view image.
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frames object detection as a regression problem to spatially sepa-

rated bounding boxes and associated class probabilities. A single

neural network predicts bounding boxes and class probabilities

directly from full images in one evaluation. The outputs of YOLO

models are class probabilities, bounding box dimensions and loca-

tion, and box confidence (a real number between 0 and 1 that in-

dicates how confident the model is about a detection being an actual

relevant object, in which 0 and 1 correspond to minimum and

maximum confidence, respectively).

The box predictions are then cleaned in the NMS process, where

overlapping (and thus redundant) boxes are removed based on the

amount of overlapping, which is measured with the IoU metric

(Equation 2). In addition, we apply an extra filtering step before NMS

that removes all predictions with a confidence <0.001 because
Figure 9. Caption of a report

generated by the CADx system. By

dragging the slider, the doctors can

compare the original image and the

image with the bounding boxes

around the hives.
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considering the entirety of predictions in NMS could lead to prob-

lems in memory allocation.

YOLOv5 has several architectures consisting of a different number

of parameters: YOLOv5s (7.3M), YOLOv5m (21.4M), YOLOv5l

(47.0M), and YOLOv5x (87.7M). Each model of the Legit.Health-

UAS-HiveNet family is a YOLOv5 with a single category (hive) at

the last layer. Apart from the number of epochs and classes, no major

changes were made to the training and validation procedures of

YOLOv5.

Experimental setup. We carried out several experiments using

the pretrained versions of the four YOLO networks to compare the

performance of each one. Each YOLO network was trained using a

4-fold cross-validation strategy, such as at each fold, we used

roughly one-fourth of the full dataset for validation. Each experiment

was run for 200 epochs on a single NVIDIA Tesla T4 (16GB) GPU

using a batch size of 16. Owing to the reduced dataset size, we

decided to apply some data augmentation techniques to make the

most out of the data available. The main data augmentation tech-

niques used were random horizontal and vertical flipping (50% and

10% probability, respectively), HSV augmentations, rotation (15

degrees), and histogram equalization (10%). Other techniques, such

as gray scaling and blurring were used with a lower probability (1%).

The images were resized to 640 � 640 pixels and normalized, and

the rest of the hyperparameters were set to default.

CADx system

With the goal of making the models accessible to the health care

professional, we developed a CADx system (a web application) that

fully integrates Legit.Health-UAS-HiveNet model to calculate the

patient-based UAS by looking at clinical images. The CADx system

works in the following three stages: image and itch input, image

processing, and generation of the severity assessment report.

In the first stage, the user uploads images of affected areas and

reports on the itchiness through a user-friendly interface. In the

second stage, the Legit.Health-UAS-HiveNet model processes the

images and based on the number of hives detected, automatically

calculates the severity of urticaria according to four different cate-

gories, namely none (0), <20 (1), 20e50 (2), and >50 (3). As shown



Figure 10. Caption of a full report

from the CADx system. The chart at

the top right shows the evolution of

urticaria, by plotting the AUAS scores

across time. AUAS, Automatic

Urticaria Activity Score.

T Mac Carthy et al.
Automatic Urticaria Severity Assessment
in Figure 9, the CADx system shows the original image and the

output of the model, as well as the count of all hives found by the

model outlined by bounding boxes. This introduces a layer of

explainability that increases the clinician’s oversight. It also shows

the itchiness reported by the patient while uploading the picture.

Finally, the output of the model is combined with the itchiness

score to give the final AUAS score. The CADx shows the results in an

insightful report containing a chart with the evolution of the AUAS

over time, as well as many other clinical end points, as shown in

Figure 10.

The report can also combine the scores of multiple images

uploaded on the same day to provide the global AUAS score. The

final report of the proposed CADx system is depicted in Figure 11. In

other words, if the user uploads pictures of several body parts, the

report of the CADx system shows both the local and the global AUAS

scores. The local score is calculated according to Equation 10, in

which Nh is the total number of hives detected on each image and I

is the itch severity, which ranges from 0 to 3 and is filled manually by

the patient. The global AUAS is calculated by summing the results of

all the images processed by the CADx system.

AUAS ¼

8>><>>:
0þ I; if Nh ¼ 0
1þ I; if 0 < Nh < 20
2þ I; if 20 � Nh � 50
3þ I; if 50 < Nh

(10)

Metrics

Hive detection. We evaluated the detection performance of the

Legit.Health-UAS-HiveNet model using precision and recall (Equa-

tion 11), F1 score, and mean average precision. This last metric is

one of the main benchmark metrics currently being used by the

computer vision research community to evaluate the robustness of

object detection models. For the mean average precision, one must

calculate the average precision of a model at various recall thresh-

olds and then compute the mean of these values. This metric pro-

vides a single score to assess the performance of a model across

different levels of recall, with higher mean average precision indi-

cating better accuracy (Padilla et al., 2020).
P ¼ TP

TP þ FP
R ¼ TP

TP þ FN
(11)

To obtain these metrics for each architecture, we explored

different confidence thresholds while keeping the different IoU

thresholds at the default values. The confidence threshold is the

minimum box confidence value to consider a predicted box as a

relevant detection (a hive); any prediction below that threshold

is discarded, making it possible to separate all detections into

true positives, false positives, and false negatives and compute

the desired metrics. For this work, the best confidence threshold

of a model was the one that yielded the best F1 score in the

detection task. The reported precision and recall corresponded

to their corresponding values at the best confidence threshold.

Once these thresholds are found, they can be later used at

inference time (i.e., predicting a new image in a real-life

scenario).

IoU (Equation 2) is a metric used for finding similar, overlapping

boxes, which is useful for removing duplicate, overlapping pre-

dictions in the NMS. Apart from its use during NMS, IoU is also used

to compare box predictions to the ground truth to estimate false-

positive, false-negative, and true-positive rates. In this work, we

used the default IoU threshold for NMS (0.60) and computed pre-

cision, recall, F1 score and mean average precision, and IoU

threshold of 0.50 to compare the predictions to the ground truth. We

refer to this last metric as mAP@0.5.

In addition to the most common object detection metrics, we also

measured lesion counting performance via a Bland-Altman analysis

and by calculating Krippendorff alpha. For Krippendorff alpha, we

used the total number of detected lesions as the reliability data and

the difference function for ordinal data.

Finally, we decided to include another variation of the F1 score

with the goal of assessing similarity with a less severe metric than the

F1-box score using the method we explain in the subsequent section.

For every image, we generated a set of binary images (or binary

masks), one for each annotator. Each mask was generated by

drawing all the annotations of a single specialist d (Bd) as white-filled
www.jidinnovations.org 13
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Figure 11. An example of an urticaria

report with more than one image. The

final (global) AUAS is calculated by

the sum of individual AUAS scores.

AUAS, Automatic Urticaria Activity

Score.
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rectangles (Figure 12) on a black background (hence the name of

binary mask). If the specialist had not labeled any lesion in image i,

the corresponding mask would remain empty (i.e., all black). These

masks are then used to compute the F1 score (Equation 1), which in

this case measures the similarity between two masks (X and Y). In

other words, this form of the F1 score can be explained as the ratio of

the area of overlap (in pixels) between binary masks X and Y to the

total number of pixels of X and Y. We refer to this metric as the F1-

mask score.

Although the F1-box score is the correct metric to use in our sce-

nario (object detection), we decided to also include this F1-mask score

in our analysis, as it can also give us an idea of the similarity among

specialists, models, and ground truth in determining the areas with

urticaria. However, it should be treated just as a secondary metric

because it does not consider lesion counts (which is the core of this

work), and it was not used to generate the ground truth.

Severity assessment based on lesion counting. The main goal

of this work is the automation of the UAS and getting the total number

of hives detected within an image to classify it as healthy (none), mild,

moderate, and severe urticaria. For that reason, we report our findings

in terms of overall performance using regression metrics for the first

task (getting the number of hives) and classification metrics for the

second one (predicting severity). We pick MAE (Equation 12) as our

regression metric and BAC (Equation 13) as our classification metric.

We did not consider other metrics, such as accuracy or precision and

recall for severity assessment because after running the clinical

knowledge unification algorithm, the resulting dataset was highly

imbalanced. BAC compensates for this imbalance and provides a

good understanding of model performance.

To apply these classification metrics, we translated hive count into

a category as defined by UAS (Table 15). Some of the metrics were

also separated based on severity, according to the urticaria severity

score of the ground truth labels.

MAE ¼ 1

N

XN

i¼1

��yi � byi �� (12)
JID Innovations (2024), Volume 4
BAC ¼ TPR þ TNR

2
TPR ¼ TP

TP þ FP
TNR ¼ TN

TN þ FN
(13)

Here, MAE stands for mean absolute error, BAC stands for balanced

accuracy, TPR is the true-positive rate or sensitivity, and TNR is the

true-negative rate or specificity.

In summary, we decided to compute regression (MAE) and clas-

sification (BAC) metrics to assess not only the performance of the

model in the hive counting task but also its intended use in everyday

clinical practice, which is urticaria severity assessment using the

categories provided by the UAS (none, mild, moderate, and severe).

Conclusion

In this work, we have presented the AUAS, a deep learningebased

model that automatically fills in the UAS scoring system by look-

ing at clinical images. Automated CU assessment is done by a state-

of-the-art object detector, YOLOv5, which was trained on the

Legit.Health-CU-UAS dataset containing CU images with their cor-

responding UAS scores and the locations of hives.

Despite the lack of a large image dataset and the limited size of

the clinical annotation team, we consider this work a successful

proof of concept with promising results. We overcame clinical

assessment variability by developing a merging algorithm that fuses

all experts’ annotations to create a consensus. This algorithm made it

possible to train a family of deep learning models with an overall

performance similar to human performance. We believe that using

our knowledge unification algorithm on bigger datasets annotated

by more experts would boost performance. Using future iterations of

the AUAS with bigger datasets and better performance would help

reduce the time spent by patients in filling in the manual severity

scoring system and standardizing urticaria assessment.

Furthermore, the real impact of the Legit.Health-UAS-HiveNet in

clinical practice has the power to support physicians not only during the

diagnostic process but also in the monitoring of patients with chronic

types of urticaria by helping them prescribe treatments and increase the



Figure 12. Some examples of the

binary masks generated from

bounding boxes. Each mask contains

only the labels of a single specialist.

By computing the level of overlap

between masks, it is possible to

measure similarity between

specialists.
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adequacy of treatments. Meanwhile, patients are also empowered with

a new way of reporting outcomes that can be done remotely and that

enables a more objective assessment of their condition.

Regarding clinical trials, the AUAS has the potential of becoming

a new clinical end point that could increase both the quality and the

quantity of data available to researchers. The AUAS as a scoring

system presents improved clinimetric properties; it also carries the

advantage of providing a picture of the lesion along with the severity

score, which allows researchers greater oversight of studies. In

conclusion, we believe that the AUAS has the potential of improving

health outcomes, reducing costs, and increasing the practice of

evidence-based medicine in health organizations.
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